Lie groups as 3-dimensional almost contact B-metric manifolds
نویسندگان
چکیده
منابع مشابه
Almost Contact Metric Structures on 5-Dimensional Nilpotent Lie Algebras
We study almost contact metric structures on 5-dimensional nilpotent Lie algebras and investigate the class of left invariant almost contact metric structures on corresponding Lie groups. We determine certain classes that a five-dimensional nilpotent Lie group can not be equipped with.
متن کاملOn 3-dimensional generalized (κ, μ)-contact metric manifolds
In the present study, we considered 3-dimensional generalized (κ, μ)-contact metric manifolds. We proved that a 3-dimensional generalized (κ, μ)-contact metric manifold is not locally φ-symmetric in the sense of Takahashi. However such a manifold is locally φ-symmetric provided that κ and μ are constants. Also it is shown that if a 3-dimensional generalized (κ, μ) -contact metric manifold is Ri...
متن کاملNotes on some classes of 3-dimensional contact metric manifolds
A review of the geometry of 3-dimensional contact metric manifolds shows that generalized Sasakian manifolds and η-Einstein manifolds are deeply interrelated. For example, it is known that a 3-dimensional Sasakian manifold is η-Einstein. In this paper, we discuss the relationships between several special classes of 3-dimensional contact metric manifolds which are generalizations of 3-dimensiona...
متن کاملGray Curvature Identities for Almost Contact Metric Manifolds
The aim of this research is the study of Gray curvature identities, introduced by Alfred Gray in [7] for the class of almost hermitian manifolds. As known till now, there is no equivalent for the class of almost contact manifolds. For this purpose we use the Boohby-Wang fibration and the warped manifolds construction in order to establish which identities could be satisfied by an almost contact...
متن کاملLattices in contact Lie groups and 5-dimensional contact solvmanifolds
This paper investigates the geometry of compact contact manifolds that are uniformized by contact Lie groups, i.e., manifolds of the form Γ \ G for some Lie group G with a left invariant contact structure and uniform lattice Γ ⊂ G. We re-examine Alexander’s criteria for existence of lattices on solvable Lie groups and apply them, along with some other well known tools. In particular, we restric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry
سال: 2014
ISSN: 0047-2468,1420-8997
DOI: 10.1007/s00022-014-0244-0